

Title of the PhD thesis:

A Declarative Foundation for Querying the History of

Software Projects

Promotor:

Prof. dr. Coen De Roover

Prof. dr. Viviane Jonckers

The defence will take place on

Friday, May 5, 2017 at 17:00

in Auditorium D.0.02 at the Campus
Humanities, Sciences and Engineering of
the Vrije Universiteit Brussel,
Pleinlaan 2 - 1050 Elsene, and will be followed
by a reception.

Members of the jury

Prof. Dr. Em. Theo D’hondt
Prof. Dr. Jan Hidders
Prof. Dr. Ann Dooms
Prof Dr. Peter Vranckx
Dr. Julia Lawall (Sorbonne Université Paris)

Prof. Dr. Xavier Blanc (Université de Bordeaux)

Reinout Stevens (°1988), obtained
a Master in Computer Science at
the VUB in 2011. Supported by an
IWT grant, he started to pursue
declarative techniques for
querying the history of software
projects. In the course of the next
4 years, he co-authored 1 journal
article, 2 full-length conference
papers, and 5 short conference
papers. He presented his results at
several international workshops
and conferences. For most of the
past year, he contributed several
prototypes to an IWT SBO project
on change-centric quality

assurance.

Curriculum vitae

The use of a Version Control System (VCS) is an industry best practice for
developing software projects. VCS’s enable developers to share and integrate
changes made to the source code. As a side-effect, a VCS stores the entire
development history of the versioned software project. This history is of interest
to several stakeholders. Developers can use it to find answers to questions that
might arise during the development. Examples of such questions are “Who
introduced this piece of code?” or “Who has contributed to this failing class?”.
Researchers in the domain of mining software repositories can leverage the same
history to analyze, spot trends, and retrieve actionable information about the
development of software projects.
Although very insightful, software histories are too large to inspect manually.
Support from a general-purpose history querying tool that satisfies the needs of
the different stakeholders is in order. Such a tool automatically identifies the
elements from a project’s history that exhibit the characteristics specified in a
given history query. We identify several criteria for such a general-purpose history
querying tool. Among others, history querying tools should support the following
characteristics in their queries:

 Version Characteristics concern the different elements of a particular
version of a project. Examples of these characteristics are the author,
commit message, or the state of the source code of a particular version.

 Temporal Characteristics concern the temporal quantification over the
versions of the software project. Examples include quantifiers such as
“for every version” or “after the first version that…”.

 Change Characteristics concern the fine-grained edits made between two
versions of the source code. Examples of these are the source code
elements that have been inserted, moved, updated or removed.

 Evolution Characteristics concern the effect of applying a (sub)sequence
of changes to source code. Examples are all change sequences that have
the same effect as a known refactoring or earlier transformation of the
code.

We propose a declarative foundation to history querying that supports these
different characteristics. Characteristics are expressed in logic queries, while a
logic proof procedure identifies history elements exhibiting the specified
characteristics. We create and design the general-purpose history querying tool
QwalKeko that supports the characteristics in a uniform declarative language. We
validate our work through different means. We validate the support for version
and temporal characteristics through several usage scenarios stemming from the
aforementioned stakeholders. We validate the support for change characteristics
by conducting a large-scale empirical study in which we investigate the co-
evolution of functional tests with the system under test. We conduct this study
twice; once using our approach to history querying and once using a general-
purpose programming language. This enables us to compare both implementations
on the different concerns of the study. Finally, we evaluate the support for
evolution characteristics by identifying instances of refactorings in different
change sequences stemming from open-source projects, and ensuring that the

identified change sequences are correct, minimal and executable.

Abstract of the PhD research

The Research Group

Software Languages Lab

has the honour to invite you to the public defence of the PhD thesis of

Reinout Stevens
to obtain the degree of Doctor of Sciences

