Screening and classification of ordinary chondrites by Raman spectroscopy

Lidia PITTARELLO1*, Kitty BAERT2, Vinciane DEBAILLE3, and Philippe CLAEYS1

1Earth System Science, Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
2Materials and Chemistry, Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
3Laboratoire G-Time, Geochemistry: Tracing with isotopes, minerals and elements, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, 1050 Brussels, Belgium
*Corresponding author. E-mail: lidia.pittarello@vub.ac.be

(Received 19 May 2014; revision accepted 12 July 2015)

Abstract—Classification of ordinary chondrite meteorites generally implies (1) determining the chemical group by the composition in endmembers of olivine and pyroxene, and (2) identifying the petrologic group by microstructural features. The composition of olivine and pyroxene is commonly obtained by microprobe analyses or oil immersion of mineral separates. We propose Raman spectroscopy as an alternative technique to determine the endmember content of olivine and pyroxene in ordinary chondrites, by using the link between the wavelength shift of selected characteristic peaks in the spectra of olivine and pyroxene and the Mg/Fe ratio in these phases. The existing correlation curve has been recalculated from the Raman spectrum of reference minerals of known composition and further refined for the range of chondritic compositions. Although the technique is not as accurate as the microprobe for determining the composition of olivine and pyroxene, for most of the samples the chemical group can be easily determined by Raman spectroscopy. Blind tests with ordinary chondrites of different provenance, weathering, and shock stages have confirmed the potential of the method. Therefore, we suggest that a preliminary screening and the classification of most of the equilibrated ordinary chondrites can be carried out using an optical microscope equipped with a Raman spectrometer.

INTRODUCTION

Ordinary chondrites are the most common meteorites in the world (Weisberg et al. 2003). Since 2009, joint Belgian–Japanese expeditions in Antarctica have brought back hundreds of new meteorites. New meteorites must be classified for the submission and the approval of their name, as well as for meteorites collected in Antarctica by other missions (e.g., ANSMET) and for those found in the Sahara area (e.g., Idomar et al. 2014). Ordinary chondrites dominate in the historical collections in museums (e.g., Krot et al. 2005) and among the newly collected meteorites. Classification of ordinary chondrites is time consuming and requires qualified scientists. The classification of the Belgian–Japanese ordinary chondrites is done at the National Institute of Polar Research (NIPR) through two analytical steps (1) evaluation of the Fa and Fs content in olivine and in low-Ca pyroxene, respectively, for determining the chemical group by electron microscopy and (2) identification of the petrologic group (from 3 to 6, depending on the metamorphic grade), weathering, and possibly shock stage by optical microscopy (e.g., Weisberg et al. [2003] and references therein). The Fe range for chemical group is generally expressed as endmember content. For olivine, the endmembers are fayalite (Fa), with formula Fe2SiO4, and forsterite (Fo), with mineral formula Mg2SiO4. For low-Ca pyroxene, the endmembers are enstatite (En), with mineral formula Mg2Si2O6, and ferrosilite (Fs), with mineral formula Fe2Si2O6. The chemical groups in ordinary chondrites are: H (Fa16–20 and Fs14–18), L (Fa22–26 and Fs19–22), and LL (Fa27–32 and Fs52–26), according to the definition in Van Schmus and Wood.
Raman spectroscopy has already been used for meteorite characterization, but mostly for instrument calibration that will allow in situ analyses of lunar and Martian rocks (e.g., Haskin et al. [1997] and Wang et al. [2004]). The correlation between composition of olivine and pyroxene has been determined (Wang et al. 2004) and detailed work on Raman calibration for the Mg/Fe ratio in pyroxene (Huang et al. 2000; Wang et al. 2001) and in olivine (e.g., Kuebler et al. 2006) has been carried out. The potential of Raman spectroscopy has been largely exploited for the identification of shock-induced features or shock-induced polymorphs in meteorites (e.g., Wang and Chen 2006; Gillet et al. 2007). Recently, Raman spectroscopy on the structure of carbonaceous matter has allowed the detailed classification of the metamorphic stage (petrologic type) in low-grade chondrites (Bonal et al. 2006, 2014; Quirico et al. 2009). The works on Raman spectroscopy on planetary materials are uncountable and cannot all be listed here, but so far this technique has not regularly been used as a method for meteorite chemical classification.

The theory behind Raman spectroscopy can be simplified as the inelastic response of chemical bonds to the excitement induced by photons. This excitation produces a scattering of the incident light with a typical wavelength that provides information on the mineral structure, composition, and vibrational as well as the electronic states of the investigated material (e.g., Wolverson 1995). The distribution of Fe and Mg in olivine and pyroxene structures is reflected by the peak position in the Raman spectra because of the different size of the two ions, therefore providing a correlation between the obtained spectrum and the chemical composition of the analyzed grain.

Here, we propose to apply Raman spectroscopy for ordinary chondrite classification, in particular for the chemical group determination. A simplified calibration method is proposed in the range of olivine and pyroxene compositions characteristic for ordinary chondrites and the results of blind tests of classification are shown to support the potential of the technique.

SAMPLE DESCRIPTION AND ANALYTICAL METHODS

Raman spectra from reference minerals are available in the online RRUFF database (Downs 2006), and spectra were obtained from selected meteorites for the purpose of this study. The first provide a reference correlation between Raman spectra and chemical composition (Table 1) and the latter are used for checking and refining this correlation specifically for ordinary chondrites. The meteorites selected for refining the existing calibration include two type 3 ordinary chondrites and one enstatite chondrite, as following:

1. Asuka (A) 09178, an LL3 ordinary chondrite (Yamaguchi et al. 2014) collected in Antarctica in 2009 by a Belgian–Japanese joint mission (Fig. 1a).
2. Yamato (Y) 793255, an L3 ordinary chondrite, collected in Antarctica in 1979 by a Japanese mission (Fig. 1b).
3. Sahara 97079, an EH3 chondrite, paired with Sahara 97096, found in North Africa in 1997 (Fig. 1c).

Type 3 ordinary chondrites were preferentially chosen because they provide the widest range of olivine and pyroxene composition between chondrules. The
enstatite chondrite was selected for pyroxene endmember compositions. This sample contains also a few tiny (ca. 50 μm in size) grains of olivine, which has provided additional analyses for olivine endmembers. The samples were investigated in the form of polished thin sections.

For testing the method, two Raman spectroscopy instruments were used. The first is a confocal Raman microscope LabRAM HR Evolution (HORIBA Scientific), equipped with a multichannel air-cooled CCD detector (spectral resolution <1 cm⁻¹, lateral resolution 0.5 μm, axial resolution 2 μm), with a solid-state laser corresponding to green light (532 nm) and 1.25 mW excitation with 10% filter for preventing any sample damage, available at the Vrije Universiteit Brussel (VUB). The second is a SENTERRA Dispersive Raman Microscope (BRUKER), equipped with a thermoelectrically cooled CCD (ANDOR DU420-OE) with a spectral resolution of ~9 cm⁻¹ in the 100–4000 cm⁻¹ range (50 × 1000 μm slit) and a continuous automatic calibration (0.1 cm⁻¹ theoretical accuracy) with a solid-state laser corresponding to green light (532 nm) at 2 mW for excitation, at the Royal Belgian Institute of Natural Sciences (RBINS). In sample A 09178, pyroxene and olivine grains of six chondrules, at least three points per grain (Fig. 2) were measured with both instruments for comparison. The resulting spectra show negligible differences, with a shift in the peaks positions of less than 1 cm⁻¹. The selected chondrules were marked on a printed scan of the thin section, to analyze the exact same areas for composition.

The Raman spectra were processed with the free software package GNU Octave. The peaks were detected by means of `peakdet` MATLAB/Octave script that is a simple function of finding the maxima of a two column set of data (x and y) and returning the x value (Raman shift) corresponding to those maxima (Bilauer 2012). Maxima are determined as highest values, preceded and followed by a value lower than a certain delta, determined by the user. For each grain, the average Raman shift for the selected peak and the standard deviation between the point analyses were determined. The standard deviation of Raman shift in a chondrule (at least three measurements) was less than 0.06%.

The composition of olivine and pyroxene in the selected meteorites A 09178 and Y 793255 was determined with a FEI-Inspect-S scanning electron microscope (SEM), equipped with backscattered electron and EDX detectors, at the RBINS. Experimental conditions were 20 kV excitation energy, 10 mm working distance (WD), and ~5 nA beam current. The quantitative analyses are calibrated by comparison with olivine and pyroxene standards from the series MINM 25–53 from Astimex Scientific Limited. The standard deviation for olivine composition

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Composition</th>
<th>Peak A (cm⁻¹)</th>
<th>Peak B (cm⁻¹)</th>
<th>Peak C (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fa R100103</td>
<td>Fa₉₀</td>
<td>814.6</td>
<td>836.8</td>
<td>–</td>
</tr>
<tr>
<td>Fa R100102</td>
<td>Fa₃₅</td>
<td>818.0</td>
<td>846.0</td>
<td>–</td>
</tr>
<tr>
<td>Fo R060539</td>
<td>Fa₁₇</td>
<td>822.0</td>
<td>853.4</td>
<td>–</td>
</tr>
<tr>
<td>Fo R040057</td>
<td>Fa₁₆</td>
<td>822.0</td>
<td>853.4</td>
<td>–</td>
</tr>
<tr>
<td>Fo R040018</td>
<td>Fa₉</td>
<td>822.9</td>
<td>854.7</td>
<td>–</td>
</tr>
<tr>
<td>Fo R050117</td>
<td>Fa₉</td>
<td>823.5</td>
<td>855.3</td>
<td>–</td>
</tr>
<tr>
<td>Fo R060535</td>
<td>Fa₉</td>
<td>823.5</td>
<td>855.8</td>
<td>–</td>
</tr>
<tr>
<td>Fo R060551</td>
<td>Fa₉</td>
<td>823.5</td>
<td>855.3</td>
<td>–</td>
</tr>
<tr>
<td>Fo R100101</td>
<td>Fa₉</td>
<td>823.8</td>
<td>855.6</td>
<td>–</td>
</tr>
<tr>
<td>Fo R100100</td>
<td>Fa₈</td>
<td>823.8</td>
<td>855.6</td>
<td>–</td>
</tr>
<tr>
<td>Fo R100099</td>
<td>Fa₀</td>
<td>825.2</td>
<td>857.5</td>
<td>–</td>
</tr>
<tr>
<td>Fo R040052</td>
<td>Fa₀</td>
<td>824.5</td>
<td>856.8</td>
<td>–</td>
</tr>
<tr>
<td>Low-Ca pyroxene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fs R070386</td>
<td>Fs₈₄</td>
<td>312.2</td>
<td>660.2</td>
<td>990.5</td>
</tr>
<tr>
<td>Fs R070387</td>
<td>Fs₅₂</td>
<td>327.6</td>
<td>669.9</td>
<td>995.8</td>
</tr>
<tr>
<td>En R040093</td>
<td>Fs₁₆</td>
<td>338.5</td>
<td>680.3</td>
<td>1007.2</td>
</tr>
<tr>
<td>En R040094</td>
<td>Fs₁₆</td>
<td>338.5</td>
<td>681.3</td>
<td>1010.1</td>
</tr>
<tr>
<td>En R060744</td>
<td>Fs₁₅</td>
<td>339.0</td>
<td>681.7</td>
<td>1008.1</td>
</tr>
<tr>
<td>En R070418</td>
<td>Fs₁₄</td>
<td>344.4</td>
<td>683.9</td>
<td>1007.1</td>
</tr>
<tr>
<td>En R070550</td>
<td>Fs₁₀</td>
<td>341.1</td>
<td>683.9</td>
<td>1011.2</td>
</tr>
<tr>
<td>En R070630</td>
<td>Fs₇</td>
<td>n.d.</td>
<td>686.6</td>
<td>1011.5</td>
</tr>
<tr>
<td>ClinOenR070276</td>
<td>Fs₀ (clino)</td>
<td>341.5</td>
<td>687.7</td>
<td>1012.2</td>
</tr>
<tr>
<td>En R070641</td>
<td>Fs₀ (ortho)</td>
<td>343.4</td>
<td>685.2</td>
<td>1011.1</td>
</tr>
</tbody>
</table>
as determined by quantitative EDX analysis on five grains per chondrule corresponds to <2%.

The composition of pyroxene and olivine, determined by microprobe analyses, from sample Sahara 97079 was provided by S. McKibbin (unpublished data) and was not checked again for this work. The chemical composition of the reference minerals, determined by microprobe, is also available in the RRUFF online database. Olivine grains with significant content of Mn (>0.5 wt%) were not considered in this study. Pyroxene samples showing significant amount of elements, other than Fe, Mg, Si, and O, were also not considered for this work. This selection is necessary because the presence of minor elements in olivine and pyroxene can have a certain influence in the Raman spectra and a calibration determined from members as pure as possible is needed as reference. The fayalite (Fa) content in olivine and the ferrosilite (Fs) content in pyroxene was estimated by mineral formula recalculation. Finally, for a linear correlation between peak position and Fa and Fs content, the MATLAB/Octave function polyfit was applied on the data from the reference minerals. This function computes a least squares polynomial of the chosen degree for a given set of data.

RESULTS

Calibration Curve for Olivine

The typical Raman spectrum of olivine (Figs. 2a and 3) displays two major peaks, here called Peak A, with Raman shift in the range 814–824 cm\(^{-1}\), and Peak B, in the range 836–857 cm\(^{-1}\). The limits of these Raman shift ranges correspond to olivine endmembers,
fayalite (Fa), and forsterite (Fo) (Table 1). Intermediate compositions of olivine between the two endmembers show Raman shift of the two characteristic peaks included in the ranges given above and are defined for their Fa component mole%. Therefore, the Raman shift of Peak A and Peak B appears to have a roughly linear correlation with olivine composition (Figs. 4a and 4b). This correlation has been extrapolated from the Raman shift of Peak A and Peak B obtained from olivine grains considered as reference material, as representative

Fig. 2. Raman spectra of three grains of olivine (a) and three of pyroxene (b) from the same chondrule, respectively, in sample A 09178. Within a chondrule, the peak positions do not change.
of the whole range of Fa content. The best-fit curves, giving the correlation between the Fa content and the predicted Raman shift for Peak A and Peak B, as calculated by the script `polyfit` for the reference material, are:

\[
\text{Fa mole\%} = -9.13x_A + 7524 \quad (1)
\]

\[
\text{Fa mole\%} = -4.70x_B + 4025 \quad (2)
\]

where \(x_A\) is the Raman shift corresponding to Peak A and \(x_B\) is the Raman shift corresponding to Peak B. The analyzed grains from the Antarctic meteorites have Fa content limited to 0–50 mole\% (Fig. 4). In this range, the measured peak position is roughly consistent with the calculated trend. In detail, our measurements perfectly match with the correlation for Peak A (Fig. 4a), but slightly deviate from linearity for Peak B (Fig. 4b). For this reason, a different correlation between Fa content and Raman shift is proposed for Peak B, based on the limited range of our analyses on ordinary chondrites:

\[
\text{Fa mole\%} = -4.55x_A + 3899.7 \quad (3)
\]

Equations 1 and 3 are used for estimating the Raman shift expected for H, L, and LL chondrites (Table 2), according to the Fa values given in Hutchison (2004).

The Peak A versus Peak B diagram (Fig. 5), which shows the relative change of Raman shift with the composition (e.g., Kuebler et al. 2006), displays that the correlation is closer to a polynomial curve rather than a straight line (Fig. 5a). On the other hand, the correlation between the two peaks can be considered linear in the investigated range of data for ordinary chondrites (Fig. 5b). The deviation from a linear correlation between the Peak B position and the Fa content in olivine (Fig. 4b), does not significantly affect the peak versus peak correlation (Fig. 5b) in the considered range of composition.

Calibration Curve for Low-Ca Pyroxene

The typical Raman spectrum of low-Ca pyroxene shows three characteristic peaks, here called Peak A, with Raman shift in the range 312–341 cm\(^{-1}\); Peak B, in the range 660–684 cm\(^{-1}\); and Peak C, in the range 990–1011 cm\(^{-1}\) (Figs. 2b and 6; Table 1). The given range is shown by the endmembers enstatite (En) and ferrosilite (Fs). Also for low-Ca pyroxene, a correlation between the relative peak position in the Raman spectrum and the composition expressed as Fs (mole\%) content does exist. The linear correlation between the Raman shift of individual peaks and the composition is more obvious for Peak B than for the other peaks (Figs. 7a–c). In the case of pyroxene, our measurements in meteorites cover a limited range of...
composition, corresponding to $F_{s0.20}$. Limiting the plot to this range of compositions, the correlation is not as good as it appears in the extended range (Figs. 7d–f). The uncertainty in the peak position is also increased, especially for Peak C, and in some cases the data fallout of the correlation. The best-fit curves, giving the correlation between the F_s content and the predicted Raman shift for Peak A and Peak B, as calculated by the script *polyfit* for the reference material, are:

\[
F_s \text{ mole}\% = -2.58x_A + 891 \quad (4)
\]
\[
F_s \text{ mole}\% = -3.08x_B + 2116 \quad (5)
\]

Table 2. Chemical group attribution based on theoretical Raman peak position, calculated from the best-fit curve for the reference spectra with *polyfit* function in MATLAB/Octave. Values for F_a and F_s content according to Hutchison (2004) and references therein and Kessel et al. (2007).

<table>
<thead>
<tr>
<th>Chemical group</th>
<th>Peak A (cm^{-1})</th>
<th>Peak B (cm^{-1})</th>
<th>Peak C (cm^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>H F_{a16-20}</td>
<td>821.9–822.3</td>
<td>852.5–853.4</td>
<td>–</td>
</tr>
<tr>
<td>F_{s14-18}</td>
<td>337.9–339.5</td>
<td>681.2–682.5</td>
<td>1007.8–1009.0</td>
</tr>
<tr>
<td>L F_{a22-26}</td>
<td>821.3–821.7</td>
<td>851.2–852.1</td>
<td>–</td>
</tr>
<tr>
<td>F_{s19-22}</td>
<td>336.5–337.6</td>
<td>679.9–680.8</td>
<td>1006.6–1007.5</td>
</tr>
<tr>
<td>LL F_{a26-32}</td>
<td>820.6–821.3</td>
<td>849.9–851.2</td>
<td>–</td>
</tr>
<tr>
<td>F_{s22-26}</td>
<td>334.9–336.5</td>
<td>678.6–679.9</td>
<td>1005.5–1006.6</td>
</tr>
</tbody>
</table>

Fig. 4. Correlation between the F_a content in olivine and the Raman shift of two selected peaks (Peak A in (a) and Peak B in (b), respectively). The correlation curve has been calculated using the reference data (filled squares) and our measurements (circles) are plotted for comparison. The error bars represent the standard deviation for 3–5 Raman spectra and 3 EDS point analyses per chondrule.

Fig. 5. Peak versus peak plot for olivine for data shown in Fig. 4. The whole peaks position range between the two endmembers is shown in (a). The range related to our measurements in meteorites is shown in (b).
Fs mole% = \(-3.44x_C + 3479\) \text{ (6)}

where x_A is the Raman shift corresponding to Peak A, x_B is the Raman shift corresponding to Peak B, and x_C is the Raman shift corresponding to Peak C.

These curves are corrected for the composition range observed in ordinary chondrites, yielding the following equations:

- Fs mole% = \(-2.66x_A + 918\) \text{ (7)}
- Fs mole% = \(-3.08x_B + 2116\) \text{ (8)}
- Fs mole% = \(-3.43x_C + 3479\) \text{ (9)}

These equations were used for estimating the Raman shift expected for H, L, and LL chondrites, according to the Fs values given in Hutchison (2004) and shown in Table 2.

Three characteristic peaks imply three combinations of peak versus peak plot (Fig. 8). The plot of Peak A versus Peak B offers the best correlation between the reference material and the analyzed grains. Nevertheless, data for enstatite endmembers (theoretical composition Fs0) do not define a single point but rather exhibit different Raman shifts (Figs. 7a–c and 8; Table 1), reflecting the crystallography: the orthorhombic variety has higher shift than the monoclinic variety (e.g., Ulmer and Stalder 2001). According to this observation, all the analyzed grains in the enstatite chondrite (sample Sahara 97079) likely correspond to the monoclinic variety. Although interesting for the characterization of the samples, this feature increases the error in the calibration curve. The uncertainty in the detection of Peak C affects the plots Peak A versus Peak C (Fig. 8b) and Peak B versus Peak C (Fig. 8c). In detail, the measured values for chondrites do not follow on the linear correlation determined from the reference phases (Figs. 8d–f).

Blind Tests on Randomly Selected Ordinary Chondrites

Six samples from the Antarctic collection, already classified at the NIPR with the aid of microprobe and optical microscopy (Yamaguchi et al. 2014), were tested for chemical group identification by Raman spectroscopy, together with two samples from the Northwestern Africa (NWA) collection at the RBINS (Table 3). Polished chips (PS) in Al-ring and polished thin sections (PTS) were analyzed. Results are shown in Fig. 9. Despite the relatively large error bars (standard deviation corresponding to maximum 0.9 cm\(^{-1}\) for Peak A in A 09515, due to the range of Fa content), the identification of the chemical group based on olivine is
consistent with the official classification (Fig. 9a and Table 3). Results for pyroxene are less straightforward (Figs. 9b–d), even for highly equilibrated (petrologic type 5–6) samples, especially for A 09515, which has unexpectedly large error bars. Peak A seems the most sensitive to subtle crystallographic or chemical variations. Although highly shocked, sample A 09584 shows good agreement with the chemical group determined by Peak A versus Peak B and Peak B versus Peak C plots (Figs. 9b and 9d). Samples belonging to H do not show any uncertainty in the Raman identification for the chemical group. Overall, Fig. 9 shows that the average information from pyroxene is in agreement with the classification provided by olivine.

Fig. 7. Correlation between the Fs content in pyroxene and the Raman shift of three selected peaks (Peak A in (a) and Peak B in (b), and Peak C in (c), respectively). A detail view on the analyzed compositional range for the three selected peaks is shown in (d), (e), and (f), respectively.
DISCUSSION

Calibration for Olivine

The peak position versus composition plot shows a good correlation for the samples used as reference. However, the analyzed grains from chondrites do not fit perfectly with the correlation curve for Peak B, although the error bars remain small. The correlation curve obtained from the reference olivines is consistent with data in the literature (e.g., fig. 8a in Wang et al. [2004] and fig. 8 in Kuebler et al. [2006]), therefore the
cause of the small shift observed in our samples should be found in the measurements. The shift shown for Peak B by some olivine grains in ordinary chondrites might be caused by the presence of secondary elements in the crystal structure, such as a low amount of Mn, or by analytical artifacts. Unfortunately, those measurements could not be checked a second time. It should be noted that on the day of measurements a temporary problem with the calibration might have affected a portion of the spectrum. Nevertheless, this problem almost disappears in the peak versus peak plot and is consistent with a polynomial correlation curve, as observed in the literature (e.g., Kuebler et al. 2006). The possible Mn content in the selected olivine grains was not quantified because no mineral standard for this element was included among those used for the EDX analyses. However, the results suggest that <0.4 wt% possibly consists of elements other than Si, Mg, and Fe and the EDX spectra did not exhibit notable peaks for Mn. Therefore, the bad fitting for Peak B is very likely due to technical problems of the Raman instrument on the day of the analyses. To avoid similar experiences, we recommend to check the calibration of the Raman spectrometer with reference silicon wafer before and after the measurements and to check a “reference” olivine sample, of known composition, every time the classification appears dubious or problematic. Nevertheless, the corrected calibration for olivine in chondritic range (equations 1 and 3) allows correct identification of the chemical group for olivine analyses in blind tests (Fig. 9).

A major concern about the reliability of the correlation curve is the possible presence of ringwoodite, a high-pressure polymorph of olivine with cubic crystal symmetry. Ringwoodite has a Raman spectrum that is quite similar to that of olivine, but with a lower shift of the two characteristic peaks (e.g., Miyamoto and Ohsumi 1995; Gillet et al. 2007; Walton 2013). An inexperienced operator, not familiar with ringwoodite appearance in transmitted light microscopy or not aware of the occurrence of possible shock veins in the sample, might mistakenly use Raman spectra of ringwoodite for those of olivine. The spectrum of ringwoodite is also correlated to the composition (e.g., Feng et al. 2011), but a different calibration is required. For this reason, we recommend avoiding ringwoodite for a fast classification purpose. However, ringwoodite is generally localized along shock veins, which can be easily identified with the optical microscope. Although negligible in meteorites, the grain size difference between samples might also affect the Raman spectrum (Foucher et al. 2012). Thus, an accurate selection of grains to be investigated using the Raman approach, selecting coarse grained crystals, apparently equilibrated, is important for the reliability of the chemical classification of the sample.

Calibration for Low-Ca Pyroxene

Ordinary chondrites might contain minor amounts of Ca-bearing pyroxene. Only based on Raman spectrum, it is difficult to distinguish low-Ca pyroxene from pyroxenes containing >3% Ca. The spectra have similar shape, with three more evident peaks. There is only a slight shift to lower values for peak positions in the case of Ca pyroxene with respect to the low-Ca pyroxene (e.g., Wang et al. 2001). Therefore, good statistics (number of grains analyzed) are important to document the general trend of peak positions within a chondrule, to exclude out-of-trend analyses that might refer to Ca-bearing pyroxene.

In some cases, even the MATLAB/Octave peakdet script encountered problems in identifying the characteristic peaks because of a peak duplication effect. The crystallographic orientation of the analyzed pyroxene can affect the Raman spectrum (e.g., Huang et al. 2000). This might result in the duplication of a peak, in certain cases with higher Raman intensity for the secondary peak than for the characteristic peak that is correlated with the chemical composition. Duplication

Table 3. Characteristics of the samples used for blind tests.

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical group</th>
<th>Petrologic type</th>
<th>Shock stage</th>
<th>Weathering</th>
<th>PTS/PS</th>
<th>Raman classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 09244</td>
<td>L</td>
<td>6</td>
<td>–</td>
<td>B<sup>h</sup></td>
<td>PS</td>
<td>Good</td>
</tr>
<tr>
<td>A 09436</td>
<td>H</td>
<td>3</td>
<td>–</td>
<td>C<sup>b</sup></td>
<td>PS</td>
<td>Good</td>
</tr>
<tr>
<td>A 09515</td>
<td>L</td>
<td>6</td>
<td>–</td>
<td>A/B<sup>b</sup></td>
<td>PS</td>
<td>Good for Ol, 2/3 for Px</td>
</tr>
<tr>
<td>A 09546</td>
<td>L</td>
<td>6</td>
<td>–</td>
<td>C<sup>b</sup></td>
<td>PS</td>
<td>Good for Ol</td>
</tr>
<tr>
<td>A 09584</td>
<td>H</td>
<td>5</td>
<td>S5–6</td>
<td>A/B<sup>b</sup></td>
<td>PTS</td>
<td>Only Px, 2/3</td>
</tr>
<tr>
<td>A 09618</td>
<td>H</td>
<td>5</td>
<td>–</td>
<td>C<sup>2</sup></td>
<td>PS</td>
<td>Good</td>
</tr>
<tr>
<td>NWA 1717</td>
<td>LL</td>
<td>5–6</td>
<td>S4</td>
<td>W<sup>1</sup></td>
<td>PTS</td>
<td>Good for Ol within error for Px</td>
</tr>
<tr>
<td>NWA 6752</td>
<td>H</td>
<td>3</td>
<td>S1</td>
<td>W<sup>2</sup></td>
<td>PTS</td>
<td>Good</td>
</tr>
</tbody>
</table>

^aAccording to Stoeffler et al. (1991).
^bWeathering classification for Antarctic meteorites, according to ANSMET and NIPR.
^cWeathering classification according to Wlotzka (1993).
and shift of peaks might be induced also by the occurrence of fine-grained exsolution (Wang et al. 2001). However, this duplication effect is never observed simultaneously on all the three characteristic peaks. As the stage used for Raman cannot be tilted during the analyses to find the best orientation for the considered grain, we suggest carefully checking the position of the three characteristic peaks, to predict the expected shift range for the dubious peak compared to the known position of the other two (e.g., the spectrum of Fs10 in Fig. 6).

For Peak A, the experimental data from meteorites fit well with the best-fit curve obtained for the reference material. For Peak B and Peak C, the small range of composition investigated constitutes a problem. It might be difficult to select the right peak because peak C, and sometimes also peak B, show the duplication above mentioned.

Raman spectroscopy allows the identification of low-Ca monoclinic pyroxene and the orthorhombic variety (Table 1) (e.g., Ulmer and Stalder 2001). This feature is more an issue for Raman analyses than an advantage, but it occurs only for enstatitic endmembers, which are generally rare in ordinary chondrites.

Chemical Group Identification

According to Van Schmus and Wood (1967), Weisberg et al. (2003), Kessel et al. (2007) and references therein, the chemical group H, L, and LL are distinguishable based on the Fa content in olivine and the Fs content in the low-Ca pyroxene (Table 2). For olivine, the Raman calibration has given reliable results, especially for the peak versus peak plot. Therefore, following Table 2, the chemical group identification should be accurate enough (Fig. 9). In Lunning et al. (2012), although with a different technique, only olivine is considered for the chemical group determination in ordinary chondrites.

The estimate for low-Ca pyroxene might be used as confirmation, because of the complication related to the crystallographic symmetry that might affect the data.
(Figs. 9b–d). None of the peak versus peak plots provides a straightforward correlation, but the combination of all is beneficial, because of the influence of two peaks at the same time. Accordingly, the relation between chemical group and peak position for pyroxene is summarized in Table 2.

The chemical group identification based on Fa content in olivine should be always compared with that based on the Fs content in low-Ca pyroxene, at least for confirmation. In the case of strong inconsistency or if other features in the sample point to a different chemical classification, the use of the microprobe is highly recommended. A meaningful number of analyses are necessary for a reliable result. We recommend at least 30 measurements for olivine and 20 for low-Ca pyroxene. For highly equilibrated meteorites, 20 olivine and 10 pyroxene measurements might be enough, but only when the sample clearly exhibits very low standard deviation between measurements and if optical observations also point toward a high petrologic type. Whenever the determined range of data is too large for a clear classification and the optical observations suggest a type 3 chondrite, other techniques might be necessary for the chemical group identification (e.g., Scott and Krot 2005).

Practical Advantages of Using Raman Spectroscopy

The analyses reported here have been performed using both polished thin sections and polished rock chips. The use of a perfectly flat surface allows avoiding the possible contamination of the signal from neighbor phases. However, in comparison with other types of analyses, Raman is less affected by the sample topography. Whenever more than one phase contributes to the Raman spectrum and the characteristic peaks of all phases are distinguishable, the influence from other grains can be immediately recognized and the analysis repeated, adjusting the focus on the selected grain. With the microprobe, for instance, mixed signals can hardly be distinguished, resulting in a composition that is intermediate between the different phases hit by the electron beam. Thus, although not tried for this work, raw samples can potentially be used. Obviously the inner part of the meteorite must be exposed, even better if on a roughly polished surface.

The time for the acquisition of a Raman spectrum is quite short: 20–30 s, depending on the accuracy of the measurement. Analyses are performed in air. High vacuum is not required and the possible problem related to degassing of old epoxy is completely excluded. High-quality reference material, measured under the same conditions as the unknown samples, is not necessary for Raman spectroscopy, although a quick check of the instrument calibration with a silicon wafer is recommended at the beginning and at the end of the analytical session.

As petrographic thin- or polished sections are commonly prepared any way from meteorites for the petrologic type identification (e.g., Weisberg et al. 2003; Lunning et al. 2012), whenever available they can be used for Raman analyses, with no carbon coating that could impair future analyses. The petrologic type can be determined in polished preparations by the shape and distribution of metals (Huss et al. 2006; Devouard and Zanda 2013), preventing the need of a petrographic thin section, which is generally more expensive and difficult to prepare. In addition, Raman spectrometers are generally equipped with an optical, reflected light, microscope. The chemical group and the petrologic type can be, therefore, determined in most samples in one analytical step, only requiring a polished surface. Finally, as the cost of a Raman spectrometer can be relatively low in comparison with fully equipped electron microscope and microprobe, this instrument might be available in institutes that cannot afford large investments.

CONCLUSIONS

The use of Raman spectroscopy is a promising alternative method for the screening and rough chemical classification of large collections of ordinary chondrites. This technique is based on the existing correlation between the Raman shift of selected peaks of olivine and pyroxene and the corresponding Fa and Fs content, respectively. These correlations are not new in the literature, but were never used for a large-scale classification of ordinary chondrites. The advantages of the use of Raman spectroscopy are (1) reduced sample preparation is required (no carbon coating, no extra-fine polishing, no mineral separation). Although not tested for this work the technique should be applicable also on a fresh cut, roughly flat surface. (2) The instrumental calibration, limited to routine check with silicon wafer, does not depend on the type of sample analyzed and no specific reference materials are required. (3) The petrologic type can be determined in the same session if the Raman spectrometer is mounted on a petrographic microscope. (4) No high vacuum is necessary, reducing the possible issues induced by the presence of wet samples or of certain types of epoxy. Although possible causes of error are associated with the presence of shocked phases and to the complexity of the pyroxene spectrum (e.g., in the case of Ca-bearing pyroxenes and duplication of peaks due to the crystallographic orientation), the technique has proven to be reliable in blind tests. A statistically meaningful number of
analyses (30–50 in total, depending on the observed range in peak positions, between olivine and pyroxene) on different grains in the same sample and the comparison between the classification for olivine and for pyroxene separately can dramatically reduce the possibilities of mistaken chemical group evaluation. Although the use of the microprobe is still recommended for problematic samples and for accurate measurements of mineral chemistry, most of the numerous equilibrated ordinary chondrite samples filling the collections could be classified or checked by Raman spectroscopy.

Acknowledgments—The authors thank the National Institute of Polar Research in Tokyo (Japan) and the Royal Belgian Institute of Natural Sciences for the loan of polished thin sections and polished chips of the investigated samples. Christian Burlet of the RBINS is thanked for Raman assistance. Giordano Teza (University of Padova) and David De Vleeschouwer (VUB) are thanked for helpful MATLAB hints and tricks. C. Corrigan and an anonymous reviewer are thanked for the helpful comments. A. Yamaguchi is thanked for the editorial handling and insightful discussions. This work has been founded by the BELAM, SAMBA, and IUAP “Planet Topers” projects, supported by Belgian Science Policy Office (BELSPO). PC also thanks the support of Research Foundation Flanders (FWO), and VD the support of the FRS-FNRS and the ERC StG “iSoSyc”.

Editorial Handling—Dr. Akira Yamaguchi

REFERENCES

Quirico E., Montagnac G., Rouzaud J.-N., Bonal L., Bourot-Denise M., Duber S., and Reynard B. 2009. Precursor and metamorphic condition effects on Raman spectra of...

