Immiscible silicate liquids and phosphoran olivine in Netschaëvo IIE silicate: Analogue for planetesimal core–mantle boundaries

Nadia Van Roosbroek a, b, Christopher Hamann c, d, * Seann McKibbin b, Ansgar Greshake c, Richard Wirth e, Lidia Pittarello b, Lutz Hecht c, d, Philippe Claeys b, Vinciane Debaille a

a Laboratoire G-Time, DGES, Université Libre de Bruxelles, CP 160/02, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
b Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
c Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany
d Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74–100, D-12249 Berlin, Germany
e GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany

Received 28 January 2016; accepted in revised form 27 October 2016; Available online 2 November 2016

Abstract

We have investigated a piece of the Netschaëvo IIE iron meteorite containing a silicate inclusion by means of electron microprobe analysis (EMPA) and transmission electron microscopy (TEM). Netschaëvo contains chondrule-bearing clasts and impact melt rock clasts were also recently found. The examined inclusion belongs to the latter and is characterized by a porphyritic texture dominated by clusters of coarse-grained olivine and pyroxene, set in a fine-grained groundmass that consists of new crystals of olivine and a hyaline matrix. This matrix material has a quasi-basaltic composition in the inner part of the inclusion, whereas the edge of the inclusion has a lower SiO₂ concentration and is enriched in MgO, P₂O₅, CaO, and FeO. Close to the metal host, the inclusion also contains euhedral Mg-chromite crystals and small (<2 l m), Si-rich globules. A TEM foil was cut from this glassy, silico-phosphate material. It shows that the material consists of elongated olivine crystallites containing up to 14 wt% P₂O₅, amorphous material, and interstitial Cl-apatite crystals. The Si-rich silicate glass globules show a second population of Fe-rich silicate glass droplets, indicating they formed by silicate liquid immiscibility. Together with the presence of phosphor-olivine and quenched Cl-apatite, these textures suggest rapid cooling and quenching as a consequence of an impact event. Moreover, the enrichment of phosphorus in the silicate inclusion close to the metal host (phosphor-olivine and Cl-apatite) indicates that phosphorus re-partitioned from the metal into the silicate phase upon cooling. This probably also took place in pallasite meteorites that contain late-crystallizing phases rich in phosphorus. Accordingly, our findings suggest that oxidation of phosphorus might be a general process in core–mantle environments, bearing on our understanding of planetesimal evolution. Thus, the Netschaëvo sample serves as a natural planetesimal core–mantle boundary experiment and based on our temperature estimates, the following sequence of events takes place: (i) precipitation of olivine (1400–1360 °C), (ii) re-partitioning of phosphorus from the metal into the silicate phase, and (iii) formation of immiscible melts (1230–1115 °C).

© 2016 Elsevier Ltd. All rights reserved.

Keywords: Iron meteorites; Impact melting; Netschaëvo; Silicate liquid immiscibility; Core-mantle boundary

http://dx.doi.org/10.1016/j.gca.2016.10.042
0016-7037/© 2016 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Two varieties of iron meteorites can be distinguished: (i) the fractionally crystallized magmatic iron meteorites (IC, IIA, IIC, IID, IIIA, IIE, IIF, IVA, and IVB) and (ii) the silicate-bearing, so-called non-magmatic iron meteorites (IAB/IIDC and IIE), with several members containing silicate inclusions of various nature (Choi et al., 1995; Goldstein et al., 2009). While fractional crystallization of slowly cooling metallic liquids (Scott, 1972) is the process that formed the first variety, the exact formation conditions of the silicate-bearing irons are less clear. Their formation is inconsistent with extensive fractional crystallization and these irons may have come from bodies that were not sufficiently heated to form metallic cores (Haack and McCoy, 2004).

The iron meteorites belonging to the IIE group possess silicate inclusions representing a wide variety of characteristics, ranging from large chondritic clasts to smaller, molten, feldspar-rich globules (Ruzicka, 2014). Mittlefehldt et al. (1998) classified these different types into five groups while Ruzicka (2014), on the other hand, prefers to divide the silicate-bearing IIE into a fractionated and an unfracti- onated subgroup. Given the observation of a silicate inclusion made of impact melt lithology in Netschaevo (Van Roosbroek et al., 2000), it is possible that IIE are impact melt breccias. This illustrates that there is no appropriate way to classify the very broad range of mineralogical and petrological characteristics the IIE represent.

Looking at their radioisotopic ages, the silicate-bearing IIE form two groups that do not correspond to the fractionated and un fractionated subgroups based on mineralogy. An “old” IIE group, having a formation age of ~4.5 Ga, consists of 6 meteorites: Weekerose Station, Colomera, Miles, Techado, Taramuhara, and the recently described Mont Dieu, whereas meteorites sharing ages of around 3.6 Ga are called the “young” IIE; this group consists of Netschaevo, Kodaikanal, and Watson (Bogard et al., 2000).

Over the past decades, several formation scenarios were proposed for the IIE group, trying to incorporate all their different features. These can be subdivided into exogenic, endogenic, and hybrid models. In exogenic models, IIE are formed by impact mixing with limited to complete impact melting (Burnett and Wasserburg, 1967; Bence and Burnett, 1969; Scott and Wasson, 1976; Osadchii et al., 1981; Rubin et al., 1986; Wasson and Wang, 1986; Olsen et al., 1994; Ikeda and Prinz, 1996; Ikeda et al., 1997). In endogenic models, IIE are formed as an internal process inside an early planetesimal, involving internal radiogenic heating followed by incomplete separation of metal and trolite from silicate (Wasserburg et al., 1968; Prinz et al., 1982, 1983; McCoy, 1995). Hybrid models consist of a combination of both extremes (Bunch et al., 1970; Armstrong et al., 1990; Casanova et al., 1995; Ruzicka et al., 1999; Bogard et al., 2000; Hsu, 2003; Takeda et al., 2003; Ruzicka and Hutson, 2010). Ruzicka (2014) subdivided them into three groups: (i) “cold crust models” where metallic melt is mixed with cold silicate at the surface of an asteroid as a consequence of an impact event, (ii) “hot mixing models” where metallic melt is injected, also as a consequence of an impact event, in an internally heated chondritic body, and (iii) “collisional disruption and re-accretion” models where the internally heated parent body broke up and re-accreted afterwards. All these formation models involve a chondritic parent body, the main H chondrite or a related H chondrite-like parent body.

Netschaevo is the first iron meteorite where the occurrence of chondrules has been discovered and has long been regarded as the most primitive member of the IIE group. However, Van Roosbroek et al. (2016) described silicate inclusions not corresponding to the chondrule-bearing clasts, which can be classified as impact melt rocks. This suggests that Netschaevo is a breccia containing metamorphosed and impact melt rock clasts (Van Roosbroek et al., 2016) and, consequently, that collisions must have played an important role in its formation history.

Following up on the initial petrographic description of the Netschaevo impact melt rock inclusions by Van Roosbroek et al. (2016), the present study sets out a detailed nano-analytical investigation of the glassy material in the silicate inclusions of Netschaevo IIE by means of electron microprobe analysis and transmission electron microscopy in order to gain more detailed insight into their formation mechanism. We show that the occurrence of phosphor an olivine (containing several wt% P2O5; cf. Boesenberg and Hewins, 2010) and the presence of silicate emulsion textures strengthen the impact formation hypothesis. We also constrain the temperature at which transfer of phosphorus from the metal into the silicate melt occurs—a process which may be important for core–mantle boundaries or other silicate–metal interaction zones, e.g., in the source of pallasite meteorites (cf. McKibbin et al., 2016).

2. ANALYTICAL TECHNIQUES

2.1. Electron microprobe analysis

Back-scattered electron (BSE) imaging and quantitative electron microprobe analysis (EMPA) of the fine-grained, siliceous material in Netschaevo were done with the JEOL JXA-8500F field-emission electron microprobe at Museum für Naturkunde, Berlin, Germany, which is equipped with five wavelength-dispersive X-ray spectrometers and an energy-dispersive X-ray spectrometer. Operating conditions for wavelength-dispersive X-ray spectrometry (WDX) were set to an acceleration voltage of 15 kV, a beam current of 15 nA, and a working distance of ~11 mm. A slightly defocused beam (spot size ~5 μm) was used for measuring the bulk composition of the fine-grained, siliceous material. Standardization was based on the main Astexin and Smithsonian international standards suite of the micro-analytical facilities at Museum für Naturkunde; see Table A1 (Appendix A) for details. Raw data were then processed for matrix effects using a conventional ZAF routine in the JEOL JXA-8500F operating system. Normalization of WDX analyses to 100 wt% was not applied and results are reported in oxides. Detection limits varied between 48 ± 1 ppm for Cl and 210 ± 1 ppm for Mn; see Table A1 for average values. Accuracy of the WDX analyses is much better than 3% for major ele-
ments >5 wt% and in the range of 10–15% for minor elements <0.5 wt%. Precision is much better than 5% for major elements >5 wt% and in the range of several ten per cent for minor elements <0.5 wt%.

2.2. Transmission electron microscopy

Sample preparation as well as transmission electron microscopy (TEM) were both carried out at the TEM laboratory of the Deutsches GeoForschungsZentrum, Potsdam, Germany. Preparation of electron-transparent samples was done with a FEI FIB200/TEM focused ion beam (FIB) device (for a detailed description of the FIB preparation method, see Wirth, 2009). A TEM-ready foil with final dimensions of 15 × 10 × 0.1 μm was cut directly from the polished and carbon-coated section using a gallium ion beam under high-vacuum conditions. Then, it was placed on a carbon film on top of a copper grid. Further carbon-coating to prevent charging of the TEM sample was not applied (for a discussion on the need of TEM sample carbon-coating, see Wirth, 2009).

The FIB-cut TEM foil was then surveyed and analyzed with a FEI Tecnai G² F20 X-Twin transmission electron microscope. The microscope is equipped with an EDAX ultra-thin window EDX system, a Fishione high-angle annular dark-field (HAADF) detector, and a Gatan imaging filter. Operating conditions were set to an acceleration voltage of 200 kV, using normal imaging mode for bright-field (BF) and dark-field (DF) imaging and scanning transmission electron microscopy (STEM) mode for HAADF imaging and analytical electron microscopy (AEM). All HAADF images were acquired with a camera length of either 75 or 330 mm. In general, the brightness of such images follows a Z² dependency (e.g., Wirth, 2009). Specifically, a short camera length (75 mm) allows to image Z contrast (by collecting only electrons that were scattered under high angles from inner shell electrons), whereas a long camera length (330 mm) allows to simultaneously image Z contrast and diffraction contrast (by collecting electrons that were scattered under low angles from outer shell electrons). Bright-field images were digitally recorded, only electron diffraction patterns were recorded on image plates. Compositional information on both crystalline and amorphous phases was obtained semi-quantitatively from EDX spectra. Each EDX spectrum was obtained within 60–120 s live time. Beam size in STEM mode was ~1 to 2 nm. However, to avoid specimen damage and mass loss (especially of Na), the electron beam was scanned across a preselected area during data acquisition. Depending on specific count rates, the dead time of the utilized EDX spectrometer was mostly between 5 and 10%. For quantification, the k-abs factors of the TIA software package were used and all data were normalized to 100 wt%. Total errors for AEM are ~4% for concentrations of 5–30 wt% and >50% for concentrations below a few percent by weight. Structural information on crystalline and amorphous phases was either directly obtained with selected area electron diffraction (SAED) patterns recorded on image plates (allowing high precision), or by calculating diffraction patterns with a fast Fourier transform (FFT) from high-resolution lattice fringe images of lattice fringes (allowing fast data acquisition). Interpretation of acquired diffraction patterns was done with the program Digital Micrograph by Gatan.

3. PETROGRAPHY

The silicate inclusions of the impact melt rocks of Netschaevo (Fig. 1) are characterized by a porphyritic texture dominated by coarse-grained olivine and, to a lesser extent, by pyroxene crystals. They are embedded in a groundmass containing fine-grained, euhedral olivine crystals set in quenched melt that is partially crystallized with microlitic domains consisting of olivine. Several opaque phases are present in the Netschaevo silicate inclusions, the majority consisting of kamacite and taenite, usually present as large, irregular grains (300–400 μm) with lesser amounts of troilite. Metal is also found as rounded metal blebs (5–20 μm) surrounded by metal dendrites (1–5 μm) with an interstitial P–S-rich phase. Such globules are contained in the glassy material and also between and within olivine and pyroxene crystals. The glassy matrix material in the inner part of the silicate inclusion has a quasi-basaltic composition and contains a relatively high SiO₂ content, whereas the matrix material closer to the contact with the surrounding metal has lower SiO₂ and is enriched in P₂O₅, CaO, and FeO. The latter will be referred to as “silico-phosphate material” (Table 1). In the area containing the silico-phosphate material, euhedral Mg-chromite crystals of 10–100 μm and small (<2 μm), Si-rich globules are present. Olivine and pyroxene crystals have the same composition throughout the silicate inclusion, independent of the type of matrix material present. A detailed description of these samples is provided by Van Roosbroek et al. (2016).

4. MINERALOGY OF FINE-GRAINED MATERIAL

As some microstructural features are smaller than the resolution limit of the microprobe, TEM is required in order to characterize the fine-grained material in the inclusion. Thus, a TEM foil (Fig. 2a) was FIB-cut from a representative area of the silico-phosphate matrix material present at the outer rim of the silicate inclusion (cf. Fig. 1b).

4.1. Phosphoran olivine

Olivine is the most abundant phase in the fine-grained material. The olivine crystallites generally have elongated shapes and their sizes range from <500 nm to ~2 μm length and ~100 nm to ~400 nm width. They occur in a geometric, symplectitic network with interstitial glass (see Section 4.3) between individual olivine laths (Figs. 2b and 3a). Selected-area electron diffraction patterns (Fig. 4a) and HRTEM lattice fringe images (Fig. 5) indicate that olivine grains are perfectly crystalline, showing little or no signs of lattice defects or twinning. A SAED pattern of a typical olivine lath (Fig. 4a) was obtained with a low-index zone axis orientation (i.e., electron beam parallel to c axis) and could be unequivocally identified as olivine.
Specifically, lattice spacing between the (100), (010), and (110) planes is 4.65 Å, 10 Å, and 4.17 Å, respectively. Moreover, the angles between the (110) and (100) and the (110) and (010) planes are 24.7° and 65°, respectively. Thus, the obtained SAED pattern agrees well with the olivine structure.

TEM-EDX analyses (Table 2) show that olivine contains up to 14 wt% of P₂O₅ and that olivine has an intermediate fayalite (Fa) content ranging from Fa₀₂–Fa₄ on the left side of the TEM foil (where Cl-bearing apatite is absent) to Fa₄ on the right side of the TEM foil (where it is in assemblage with Cl-bearing apatite and Fe sulfides). As apparent from the number of cations on the basis of four oxygen atoms (Table 2), Si deficiency is approximately counterbalanced by the presence of P, suggesting that Si + P ≈ 1 and that phosphorus replaces silicon in the olivine structure. This is best illustrated by olivine analysis Ol.2 (Table 2), which has an unusually low SiO₂ content of 21.4 wt% (equaling 0.72 Si atoms per formula unit) paired with the highest P₂O₅ content of 14.0 wt% (equaling 0.40 P atoms per formula unit). Although TEM-EDX analyses are less precise (and notoriously lack the high accuracy and precision of microprobe data), with Si + P ≈ 1 and the sum of the remaining cations close to 2, it seems likely that phosphorus is substituting for silicon in the olivine structure.

4.2. Cl-apatite

Cl-apatite occurs as interstitial dendritic chains consisting of intergrown apatite crystallites showing typical hopper morphologies and dimensions of ~250 nm (Figs. 2d, 3b, and 6). The chains are usually between 500 nm and 1 μm long, a single chain reaching a length of ~4 μm. Individual crystallites often show hollow cavities and are delicately intergrown with olivine crystallites, Fe-sulfide blebs, and interstitial glass (Fig. 6). A SAED pattern (Fig. 4b) was indexed as apatite; lattice spacing in the 110, 100, and 200 directions is 3.86 Å, 8.19 Å, and 3.51 Å, respectively, and the angles between the 110 and 200 directions are 25.3° and 64.4°, respectively. Additionally, TEM-EDX analyses show that Cl-apatite contains up to 4.5 wt% Cl (Table 2).

4.3. Amorphous material

A third phase in the residual material is not only present in the form of amorphous globules of about 500 nm to 1.5 μm diameter, but also as an amorphous groundmass interstitial to phosphoran olivine and Cl-apatite crystallites (Figs. 2 and 3). In the globules, amorphous secondary droplets of 10–50 nm diameter are finely dispersed (Figs. 2c, d, Table 2). By EMPA-WDX and are given in wt%; bdl = below detection limit.

<table>
<thead>
<tr>
<th>Quasi-basaltic material</th>
<th>Silico-phosphate material</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂-poor</td>
<td>SiO₂-CaO-poor</td>
</tr>
<tr>
<td>SiO₂</td>
<td>53.4 ± 4.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>7.6 ± 0.9</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>FeO</td>
<td>16.9 ± 2.9</td>
</tr>
<tr>
<td>MnO</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>3.9 ± 1.3</td>
</tr>
<tr>
<td>CaO</td>
<td>10.6 ± 2.6</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.1 ± 0.6</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.3 ± 0.2</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>3.0 ± 2.0</td>
</tr>
<tr>
<td>NiO</td>
<td>bdl</td>
</tr>
<tr>
<td>Cl</td>
<td>1.3 ± 0.3</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
<tr>
<td>No. of analyses</td>
<td>10</td>
</tr>
</tbody>
</table>
Fig. 2. High-angle annular dark-field TEM images showing the entire foil (a) and typical details (b–d). Phosphoran olivine (Ol) crystallites, grown in symplectite-like fashion (b), enclose globules of Si-rich glass and Cl-apatite (Ap) hopper crystals (c and d). Note that tiny droplets some 10–50 nm in diameter are disseminated in the globules (c), hinting at further (metastable?) liquid–liquid phase separation. The TEM carbon grid is weakly visible seemingly in front of the images. The first-order (stable) liquid immiscibility is indicated by L_{fe} (Fe-rich liquid) and L_{si} (Si-rich liquid).

Fig. 3. Bright-field TEM images of phosphoran olivine, Cl-apatite, and glassy globules. (a) Symplectite-like texture of phosphoran olivine (Ol) crystallites and interstitial glass. The olivine crystallites show a common crystallographic orientation, as indicated by rather uniform diffraction conditions. Note that the glassy globule is surrounded by an olivine grain that grew around the globule. (b) Delicate intergrowth of phosphoran olivine, Cl-apatite (Ap) hopper crystals, glassy globules, and Fe sulfide blebs. Note the difference in diffraction contrast between crystalline (diffraction contrast visible) and amorphous phases (diffraction contrast absent).
and 3a, b). Both materials—the globules with secondary droplets, as well as the groundmass interstitial to the crystalline phases—lack the typical diffraction contrast of crystalline materials in BF images (Fig. 3). Furthermore, SAED patterns (Fig. 4c, d) show sets of diffuse, concentric scattering intensity, ultimately confirming that both materials are completely amorphous.

In HAADF images (Fig. 2c), the globules show dark contrast, whereas the nanometer-sized droplets show bright contrast. Hence, the host material is composed of low-Z material, whereas the secondary droplets are composed of high-Z material (Z denotes atomic number). Specifically, the globules usually show a bulk composition rich in SiO$_2$ (75.0–86.5 wt%) with lesser amounts of Al$_2$O$_3$ (9.3–12.2 wt %) and FeO (2.8–4.1 wt%; see Table 3). Moreover, considerable compositional heterogeneity from globule to globule exists for Na$_2$O (below detection limit to 5.5 wt%), K$_2$O (<0.2–1.2 wt%) and CaO (0.9–2.1 wt%), which is often associated with the presence or absence of the small, nanometer-sized, high-Z contrast droplets. Due to the small dimensions of these droplets, reliable TEM-EDX analyses were not possible on individual droplets, as focusing the electron beam for EDX analyses immediately resulted in sputtering material from the TEM foil. The glass interstitial to phosphoran olivine and Cl-apatite is dominated by SiO$_2$ (79.1–89.2 wt%), with Al$_2$O$_3$ (8.9–11.3 wt%) and FeO (1.0–6.9 wt%) being present as minor components. Thus, it is compositionally similar to the glassy globules.

Fig. 4. Selected area electron diffraction patterns of crystalline (a and b) and amorphous (c and d) phases in the studied TEM foil. (a) Olivine diffraction pattern, obtained with an incident electron beam parallel to c axis. Lattice spacing between the (100), (010), and (110) planes is \sim4.65 Å, \sim10 Å, and \sim4.17 Å, respectively. The angles between the (110) and (100) and the (110) and (010) planes are 24.7° and \sim65°, respectively. (b) Apatite diffraction pattern; lattice spacing in [1121], [1100], and [2021] direction is 3.86 Å, 8.19 Å, and 3.51 Å, respectively. The angles between the [1121] and [2021] and the [1100] and [2021] directions are 25.3° and 64.4°, respectively. (e) Diffraction pattern of a glassy globule with secondary droplets (obtained from the large globule in the upper right corner of Fig. 3b), showing a set of diffuse, concentric rings that prove that the material is truly amorphous. (d) Diffraction pattern of the glass interstitial to olivine crystallites, also yielding a set of diffuse, concentric rings.
Fig. 5. High-resolution TEM image picturing lattice planes in a typical phosphor olivine crystallite with a zone axis of [001]. The olivine crystal lattice is free of lattice defects or twinning, and lattice spacing of the (010) plane is ~10 Å. The inset shows the corresponding SAED pattern; see Fig. 4a for details.

Table 2
Composition of phosphor olivine and Cl-apatite crystallites in the fine-grained matrix of the silicate inclusions in Netschaëvo determined by analytical transmission electron microscopy.

<table>
<thead>
<tr>
<th></th>
<th>OL1</th>
<th>OL2</th>
<th>OL3</th>
<th>OL4</th>
<th>OL5</th>
<th>Ap.1</th>
<th>Ap.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>30.8</td>
<td>21.4</td>
<td>33.1</td>
<td>31.5</td>
<td>31.9</td>
<td>3.8</td>
<td>6.4</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.6</td>
<td>0.5</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>FeO</td>
<td>32.3</td>
<td>38.4</td>
<td>38.8</td>
<td>34.5</td>
<td>46.4</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>MnO</td>
<td>bdl</td>
<td>1.4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>MgO</td>
<td>24.4</td>
<td>24.3</td>
<td>27.6</td>
<td>25.5</td>
<td>14.8</td>
<td>1.1</td>
<td>bdl</td>
</tr>
<tr>
<td>CO₂</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>0.2</td>
<td>48.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>11.8</td>
<td>14.0</td>
<td>bdl</td>
<td>7.1</td>
<td>6.3</td>
<td>40.2</td>
<td>35.8</td>
</tr>
<tr>
<td>Cl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>4.3</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Number of cations on the basis of four O

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Al</th>
<th>Cr</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>P</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL1</td>
<td>0.94</td>
<td>0.02</td>
<td>–</td>
<td>0.82</td>
<td>1.11</td>
<td>1.17</td>
<td>0.30</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>OL2</td>
<td>0.72</td>
<td>0.02</td>
<td>–</td>
<td>1.08</td>
<td>0.04</td>
<td>1.22</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>OL3</td>
<td>0.94</td>
<td>–</td>
<td>–</td>
<td>0.93</td>
<td>0.01</td>
<td>1.17</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>OL4</td>
<td>0.94</td>
<td>–</td>
<td>–</td>
<td>0.86</td>
<td>0.01</td>
<td>1.13</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>OL5</td>
<td>1.00</td>
<td>–</td>
<td>–</td>
<td>1.21</td>
<td>0.01</td>
<td>0.69</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Ap.1</td>
<td>0.30</td>
<td>–</td>
<td>–</td>
<td>0.17</td>
<td>0.01</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Ap.2</td>
<td>0.51</td>
<td>–</td>
<td>–</td>
<td>2.69</td>
<td>4.08</td>
<td>2.43</td>
<td>2.43</td>
<td>2.43</td>
<td>2.43</td>
</tr>
</tbody>
</table>

Data were obtained by TEM-EDX and are fixed to 100 wt%; bdl = below detection limit.

* All Fe reported as FeO.

† Fa = 100 × Fe/(Fe + Mg + Mn).
Fig. 6. High-angle annular dark-field TEM image showing the delicate intergrowth of Cl-apatite (Ap), phosphoran olivine (Ol), Fe-sulfides, and interstitial glass in detail (cf. Fig. 2d for an overview). Note the presence of hollow cavities in the Cl-apatite hopper crystals.

Table 3
Composition of interstitial glass and Si-rich, amorphous droplets (Lsi) in the fine-grained matrix of the silicate inclusions in Netschaεvo determined by analytical transmission electron microscopy.

<table>
<thead>
<tr>
<th></th>
<th>G.1</th>
<th>G.2</th>
<th>Average</th>
<th>σ</th>
<th>Lsi.1</th>
<th>Lsi.2</th>
<th>Lsi.3</th>
<th>Lsi.4</th>
<th>Lsi.5</th>
<th>Average</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstitial glass, n = 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75.0</td>
<td>86.5</td>
<td>85.0</td>
<td>85.0</td>
<td>80.9</td>
<td>82.5</td>
<td>1.9</td>
</tr>
<tr>
<td>SiO₂</td>
<td>89.2</td>
<td>79.1</td>
<td>84.2</td>
<td>2.3</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
</tr>
<tr>
<td>TiO₂</td>
<td>bdl</td>
<td>0.6</td>
<td><0.6</td>
<td>–</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>8.9</td>
<td>11.3</td>
<td>10.1</td>
<td>0.5</td>
<td>10.8</td>
<td>9.3</td>
<td>10.2</td>
<td>10.2</td>
<td>12.2</td>
<td>10.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
</tr>
<tr>
<td>FeO*</td>
<td>1.0</td>
<td>6.9</td>
<td>3.9</td>
<td>1.3</td>
<td>4.1</td>
<td>3.2</td>
<td>2.8</td>
<td>2.8</td>
<td>3.6</td>
<td>3.3</td>
<td>0.2</td>
</tr>
<tr>
<td>MnO</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
</tr>
<tr>
<td>MgO</td>
<td>0.4</td>
<td>1.5</td>
<td>1.0</td>
<td>0.3</td>
<td>1.7</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>CaO</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>2.1</td>
<td>bdl</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Na₂O</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
<td>5.5</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>>5.5</td>
<td>–</td>
</tr>
<tr>
<td>K₂O</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
<td>bdl</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>1.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
</tr>
<tr>
<td>Cl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>–</td>
<td>0.8</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Data were obtained by TEM-EDX and are fixed to 100 wt%; σ = standard error; bdl = below detection limit.

* All Fe reported as FeO.
The glassy globules are usually surrounded by phosphoran olivine crystallites, which, in some cases, seemingly grew around the glassy globules (Fig. 2c). The interface between host silicate glass and secondary glass droplets is, even under highest magnification, always a sharp meniscus rather than a gradual transition of composition. Furthermore, the secondary droplets cluster in the cores of their host globules, leaving a narrow zone almost free of secondary droplets adjacent to the interface with the surrounding olivine (Fig. 2c).

4.4. Metallic globules

Metallic globules of 100 nm to 60 μm diameter are disseminated in the silicate inclusion. Usually, these globules consist of an intergrowth of two or three phases (Fe-rich, S-rich, and possibly with an additional P-rich phase). Microprobe measurements indicate that the Fe-rich phase in the globules comprising the three phases consist of a Ni-poor phase (87.3 wt% Fe and 10.1 wt% Ni) and a Ni-rich phase (66.9 wt% Fe and 32.4 wt% Ni). The S-rich phase consists of 62.6 wt% Fe and 33.8 wt% S, whereas the P-rich phase consists of 60.7 wt% Fe, 24.5 wt% Ni, and 13.8 wt% P.

5. DISCUSSION

5.1. Phosphoran olivine

Phosphoran olivine is an extremely rare phase, being described for the first time in pallasites (Buseck, 1977; Buseck and Clark, 1984). It is generally referred to as “phosphoran” if more than 1 wt% P2O5 is present (Boesenberg and Hewins, 2010). For example, Wasson et al. (1999) found up to 7.4 wt% P2O5 in phosphoran olivine from the Brenham pallasite. This mineral has also been found in terrestrial (Goodrich, 1984; Agrell et al., 1998) and other extraterrestrial samples (Buseck and Clark, 1984; Wasson et al., 1999; Goodrich, 2003; Wang et al., 2006), as well as in manufactured objects (Tropper et al., 2004; Boesenberg, 2006). In olivine, P5+ will replace Si4+ in the silica tetrahedron, but requires charge balancing with another cation. Early studies suggested that P5+ and Na+ substitute for Si4+ and Mg2+ (or Ca2+), as is the case for garnets (Thompson, 1975; Bishop et al., 1976). However, Na+ cannot be accommodated by olivine, as there is no structural site available for this cation (Goodrich, 1984). Buseck and Clark (1984) were the first to propose the possibility of vacant octahedral sites that compensate for the charge of P5+. Goodrich (1984) supported this idea, based on structural formula of olivine showing cation deficiencies. The vacancy of the octahedral site was experimentally confirmed by Boesenberg and Hewins (2010), who proposed the charge balancing scheme $4^V\text{M}^2+ + 2^V\text{Si}^{4+} \leftrightarrow 3^V\text{M}^2+ + 2^V\text{P}^{5+} + \text{V}^\text{Liq}$.

Boesenberg and Hewins (2010) carried out experiments to constrain the formation conditions of phosphoran olivine and concluded that three requirements need to be met: (i) enrichment of P2O5 in the parental melt, (ii) depletion of SiO2 in the parental melt, and (iii) rapid crystallization from a melt or rapid cooling in an un-equilibrated system. The latter is inferred from their findings that P behaves compatibly within the first tens of hours of the experiments ($D^\text{Ol/Liq} > 1$), resulting in the incorporation of P into the olivine, but becomes highly incompatible ($D^\text{Ol/Liq}$ is 0.001–0.3) after a timescale of days to weeks, and will be expelled from the crystal lattice and be replaced by Si. Based on their experiments, Boesenberg and Hewins (2010) concluded that phosphoran olivine crystallized from a melt supersaturated in P, by igneous activity or a pyrometamorphic reaction.

5.2. Crystal shape and crystallization of Cl-apatite

The skeletal and parallel arrangements of apatite crystals in the Netschaevo silicate inclusions can be produced by quenching from a liquid (Wyllie et al., 1962), while near-equilibrium growth produces smaller, equant apatites co-existing with liquid or vapor. Quench apatites produced experimentally (Wyllie et al., 1962) are generally closely-packed bundles of parallel or radiating needle aggregates. These bundles exhibit a hexagonal outline with interstitial, quenched glass in cross-section. Acicular crystals are greatly elongated parallel to the c-axis and can locally contain a hollow cavity along the length of the crystal. Wyllie et al. (1962) concluded that these crystal habits are present in experimental and natural systems over a wide range of compositions, indicating that the physical control of precipitation from a cooling liquid is the main driving force to form these crystals, while its chemical environment seems less important. Furthermore, acicular apatite crystals have been found in several environments (Girault, 1966; Capdevilla, 1967; Bargossi et al., 1999) and their presence has often been used to infer rapid cooling conditions and/or the presence of a fluid (Piccoli and Candela, 2002).

Several studies have investigated the solubility of apatite in melts. Although most studies have focused on felsic systems, Watson (1979) reported that saturation of apatite in basic to intermediate magmas is controlled by three variables, i.e., concentration of P2O5, concentration of SiO2, and temperature. The experiments were carried out over a temperature range of 1165–1275 °C and at 1 atm pressure. In a magma containing about 45 wt% SiO2, ~6 wt% P2O5 is required for apatite saturation at 1200 °C. With increasing amounts of SiO2 and with decreasing temperature, the amount of P2O5 needed to saturate the melt decreases. This indicates that high P2O5 concentrations are needed to saturate basaltic liquids. Furthermore, the amount of CaO has also an effect on apatite saturation (Tollari et al., 2006). In contrast to SiO2, which is negatively correlated to the apatite saturation temperature, CaO encourages apatite saturation (Tollari et al., 2008). Furthermore, all experiments performed on ferrobasaltic liquids (Watson, 1980; Tollari et al., 2006, 2008) showed that pressure only has a minor effect on apatite saturation.

5.3. Silicate liquid immiscibility

From the observations made above—Si-rich silicate glass globules showing a secondary population of (presum-
ably Fe-rich) silicate glass droplets—it has to be considered that silicate liquid immiscibility affected the crystallization history of the fine-grained silicate matrix during cooling. In fact, liquid–liquid phase separation through immiscibility is a common phenomenon in glass-forming binary and multicomponent silicate systems. For example, it is frequently encountered and utilized in the production of technological glasses (e.g., Shelby, 2005). On the contrary, in geosciences, the relevance of silicate liquid immiscibility has been debated since the early 20th century (e.g., Daly, 1914; Bowen, 1928; Roedder, 1979; Philpotts, 1982; Veksler et al., 2007; Charlier et al., 2013, and references therein), and thus far, it seems that no consensus has been reached regarding its petrogenetic role and importance. However, despite its controversial reputation in geologic and planetary sciences, a large number of case studies on silicate emulsions exist in the literature. These have addressed terrestrial (e.g., Philpotts, 1982) and lunar (e.g., Roedder and Weiblen, 1970, 1971) basalts, terrestrial layered intrusions (e.g., Jakobsen et al., 2005), natural (e.g., Zolensky and Koeberl, 1991; Hamann et al., 2013) and experimental (Ebert et al., 2013) impact melts, and meteorites (e.g., Ruzicka et al., 2006).

The physical mechanism behind the unmixing process is quite universal and based on thermodynamics and the behavior of a system’s Gibbs free energy of mixing, ΔG_m. Briefly, if mixing of two components yields a lower ΔG_m, the mixture will remain homogeneous, whereas if separation of the mixture into two components yields a lower ΔG_m, the mixture will (if allowed by kinetics) separate into two phases (James, 1975; Wood and Hess, 1980; Shelby, 2005). Phase separation in glass-forming silicate systems is in addition a consequence of the poor steric compatibility between network-forming (mainly Si$^{4+}$) and network-modifying (e.g., Fe$^{2+}$, Mg$^{2+}$, and Ca$^{2+}$) cations and, furthermore, the Coulomb repulsion between poorly shielded network-modifying cations (Hudson and Baker, 2002). In a silicate melt, network-modifying cations are surrounded by bridging (Si–O–Si) and non-bridging (Si–O–M, where M is a network-modifying cation) oxygens that isolate the network-modifying cations (Hudon and Baker, 2002). The impact melt rocks of Netschävo were probably produced by shock melting and likely originated from the same parent material as the chondrule-bearing clasts, based on their similar composition (cf. Van Roosbroek et al., 2016). High temperatures must have been reached to melt a large part of the olivine. Large low-Ca pyroxene and olivine grains were preserved from melting, whereas small olivine and low-Ca pyroxene, together with calcic pyroxene, plagioclase, and phosphates, completely melted (cf. Van Roosbroek et al., 2016). At this stage the metal must also have been partially molten, as evidenced by the presence of quench features in the metal host and the scalloped contact between the silicate inclusion and surrounding metal (cf. Van Roosbroek et al., 2016). Upon cooling of the metal–silicate assemblage, several events took place that probably occurred in the following order: (i) precipitation of olivine and pyroxene from the liquid, (ii) phosphorus
in liquid metal–sulfide is oxidized and re-partitions into the silicate melt, (iii) silicate liquid immiscibility occurs, possibly due to high P$_2$O$_5$ contents, and (iv) phosphoran olivine and Cl-apatite crystallize during a late quenching event from Lfe, whereas Lsi quenched to a glass. In the following sub-sections, we place some quantitative constraints on these events.

5.4.1. Precipitation of olivine from the melt: estimation of temperature

Roeder and Emslie (1970) experimentally investigated olivine–liquid equilibria and presented a model to predict the temperature at which olivine will saturate in a liquid. This model is based on two important observations. The first is that the ratio

$$\frac{(X_{\text{MgO}}^{\text{Sil}})/(X_{\text{MgO}}^{\text{Liq}})}{(X_{\text{FeO}}^{\text{Sil}})/(X_{\text{FeO}}^{\text{Liq}})}$$

is nearly constant over a wide range of temperatures. The second observation is that the ratio

$$X_{\text{MgO}}^{\text{Liq}} / X_{\text{MgO}}^{\text{Sil}}$$

is highly temperature-dependent. Putirka (2005) recalibrated the model of Roeder and Emslie (1970), incorporating the effect of temperature, SiO$_2$, Na$_2$O, K$_2$O, and H$_2$O with the parameterizations:

$$\ln K_D(Mg) = -0.106193(\pm 0.007) + 3063.2(\pm 87.4)/T(\degree C) + 0.019(\pm 0.001)[\text{SiO}_2]^{\text{Liq}} + 0.080(\pm 0.002)[\text{Na}_2\text{O} + \text{K}_2\text{O}]^{\text{Liq}}$$

$$\ln K_D(Fe) = -3.25(\pm 0.09) + 2556.4(\pm 114.6)/T(\degree C) + 0.028(\pm 0.002)[\text{SiO}_2]^{\text{Liq}} + 0.052(\pm 0.003)[\text{Na}_2\text{O} + \text{K}_2\text{O}]^{\text{Liq}}$$

and obtained an olivine saturation surface that was temperature-sensitive and independent of olivine composition. This model is used here to find the temperature at which fine-grained olivines precipitate from the composition. This model is used here to find the temperature-sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition. This model is used here to find the temperature sensitive and independent of olivine–liquid equilibria and presented a model to predict the temperature at which fine-grained olivines precipitate from the melt composition.

The calculated exchange coefficient K_D from the model, using these olivine compositions and the composition of the best-matching melt, is 0.32, in good agreement with typical K_D values of 0.31–0.34 for experiments on similar meteoritic melts (e.g., experiments of Usui et al., 2015) and clearly in the general range of 0.17–0.45 for basaltic systems (e.g., Putirka, 2005). These calculations further indicate that olivine precipitated in the Netschaevo silicate inclusion in the relatively high temperature range of 1350–1400 °C.

5.4.2. Re-partitioning of phosphorus from the metal into the silicate phase

The silico-phosphate matrix material is concentrated in a 100-μm-wide rim at the edge of the silicate inclusion, close to the contact with the metal host. The area also contains small, SiO$_2$-rich globules spread in the fine-grained matrix and 10–100-μm-size Mg-chromite grains (Fig. 1). Based on the presence of Mg-chromite grains and the high amount of phosphorus in this region, resulting in the presence of phosphoran olivine and apatite, we can reasonably assume that phosphorus and chromium from the surrounding metal partitioned into the silicate melt. This is supported by (i) the low amounts of Cr$_2$O$_3$ and P$_2$O$_5$ in the chondrule-bearing Netschaevo silicates, representing the original material (0.59 wt% and 0.54 wt% in the bulk silicate, respectively; Olsen and Jarosewich, 1971), (ii) the low concentration of P$_2$O$_5$ in the quasi-basaltic melt and the absence of chromite grains in the inner part of the silicate inclusion, and (iii) the presence of elongated intergrowths in the metal host of the investigated Netschaevo silicate inclusion (Van Roosbroek et al., 2016), consisting of a P-rich, a S-rich, and an Fe–Ni phase. These intergrowths are connected to the edge of the silicate inclusion (Fig. 1b in Van Roosbroek et al., 2016), indicating that phosphorus was supplied to the silicate melt from the metal via these structures. A similar situation is present in olivine coronas on olivine grains in the Morristown and Emery mesosiderites. In these coronas, P and Cr are enriched and this can be explained by the diffusion of P and Cr from the metal (Ruzicka et al., 1994).

Several authors have investigated the metal–silicate partitioning of phosphorus (Newsom and Drake, 1983; Jana and Walker, 1997a,b; Pak and Fruehan, 1986; Young et al., 1992). The most recent study by Righter et al. (2010) experimentally investigated the effect of temperature and melt composition on $D_p^{\text{Metal/Silicate}}$ and observed that $D_p^{\text{Metal/Silicate}}$ increases with increasing temperature and decreases with
increasing polymerization of the melt. However, the findings of these studies are not easily applied quantitatively, because silicate and metal in Netschaeövo meet at a reaction zone, and clear zoning of olivine crystals in the silicate and the presence of discrete taenite crystals in the metal indicate a cooling and crystallization history. With cooling, the partitioning of phosphorus between metal and silicate changed, resulting locally in high P2O5 in silicate along reaction boundaries with the metal. This means that the composition of the silicate melt, and thus the polymerization degree, cannot be used to deduce a DpMet/Sil value. Righter et al. (2010) showed that DpMet/Sil depends mainly on the composition of the silicate material and much less on the temperature. Although no DpMet/Sil value can be defined for Netschaeövo, the process is probably similar to the process responsible for the precipitation of oxide phases (e.g., phosphates and chromites) in IIAB iron meteorites (Olsen et al., 1999). During cooling and solidification of the metal, fractional crystallization takes place and taenite precipitates. Other elements are concentrated in the residual liquid, such as Na, Mg, K, Ca, Mn, P, Cr, (Olsen et al., 1999) and, importantly, O (Kracher, 1983). A large degree of taenite crystallization, or in another sense a low degree of partial melting, would yield a high concentration of O and P in the liquid metal. This concentration could also be explained by an unusual metal composition. The metal in Netschaeövo has a P concentration of 0.15 wt% (Buchwald, 1975), which can be compared to the P concentration in other IHE metal (0.15 wt%, 0.7 wt%, 0.3 wt%, 0.47 wt%, and 0.38 wt% for Weekeroo Station, Colomera, Kodaikanal, Elga, and Mont Dieu, respectively; Buchwald, 1975; Van Roosbroek et al., 2015). Therefore, the build-up of P and O can best be explained by fractional crystallization of the metal. With increasing oxygen fugacity, phosphorus can become oxidized. Initially, phosphorus preferentially resides in the molten metal, because DpMet/Sil is high at high temperature (Schmitt et al., 1989; Chabot and Drake, 2000; Righter and Drake, 2000; Righter et al., 2010). However, during cooling, DpMet/Sil decreases and phosphorus is expelled from the metal, partitioning into the silicate melt that is enclosed by the metallic liquid. The outer part of the silicate inclusion is enriched in P2O5, close to the contact with the metal host, while the inner part of the inclusion retains its quasi-basaltic composition. The presence of P2O5-rich rims on silicate inclusions is therefore possible; nevertheless the introduction of an additional oxidizing agent cannot yet be entirely ruled out.

The effect of high phosphorus contents on silicate liquid structure has been investigated by several authors (Toplis et al., 1994; Bogaerts and Schmidt, 2006; Charlier and Grove, 2012). High P2O5 in a silicate melt will form PO4 complexes (Mysen and Richet, 2005) and, as a consequence, silicate polymerization increases, with a decrease in the number of non-bridging oxygens per tetrahedral cations (NBO/T). Higher polymerization results in a lower capacity to accommodate network-modifying cations (such as Ca2+, Mg2+, and Fe2+). The PO4 complexes fit poorly into the silicate network and the free energy of the system increases, consequently expanding the liquid–liquid miscibility gap (Bogaerts and Schmidt, 2006). This, together with the fact that addition of phosphorus into the silicate liquid lowers the liquidus temperature (Toplis et al., 1994), promotes unmixing (Charlier and Grove, 2012). Phosphorus is, thus, enriched in the poorly polymerized melt Lfe, whereas silica is enriched in the polymerized melt Lsi. The same holds for other network-modifying cations, such as Ca2+, Mg2+, and Fe2+.

5.4.3. Formation of immiscible melts

As outlined above, partitioning of phosphorus from the host metal into the silicate melt most likely induced liquid–liquid phase separation of Lfe and Lsi. Constraining a temperature at which unmixing was induced is, however, difficult, since laboratory experiments aiming at confining two-liquid fields (e.g., Roedder, 1978; Bogaerts and Schmidt, 2006; Veksler et al., 2008, and references therein) for geologically relevant compositions are generally conducted under idealized equilibrium conditions. Attainment of chemical equilibrium is questionable for impact melts (cf. Hamann et al., 2016), mainly due to fast cooling rates and short durations at which materials stay in the liquid state. However, when plotted in the pseudo-ternary system (CaO–MgO–FeO–TiO2–P2O5)–SiO2–(Na2O–K2O–Al2O3), Lsi and the interstitial glass between phosphoran olivine crystallites fall close to Lsi encountered in the mesostasis of terrestrial basalts (Fig. 7; cf. Philpotts, 1982). Moreover, the bulk composition of the quasi-basaltic melt (Table 1) falls right within the low-temperature two-liquid field, and tie lines connecting individual Lsi analyses with analyses obtained from phosphoran olivine—which is presumed to have crystallized from the conjugate melt, Lfe—are more or less parallel to the low-temperature two-liquid field (Fig. 7b). Furthermore, if we calculate a theoretical bulk composition of the assemblage phosphoran olivine + Lsi by means of calculating the volume fraction of both phases from HAADF images with the program ImageJ, we find...
Fig. 7. Liquid immiscibility in the Netschaëvo silicate inclusion. (a) Pseudo-ternary system (Na$_2$O–K$_2$O–Al$_2$O$_3$–MgO)–(FeO–MnO–TiO$_2$–CaO–P$_2$O$_5$)–SiO$_2$ after Philpotts (1982). (b) Pseudo-ternary system (CaO–MgO–FeO–TiO$_2$–P$_2$O$_5$)–SiO$_2$–(Na$_2$O–K$_2$O–Al$_2$O$_3$) after Roedder (1978). Bulk melt composition is from Van Roosbroek et al. (2016), data of immiscible melts typically encountered in terrestrial volcanic rocks are from Philpotts (1982) and Sensarma and Palme (2013).
that this (theoretical) bulk composition also falls within, or close to, the low-temperature two-liquid field. Thus, unmixing was most likely due to low-temperature liquid immiscibility, yet it remains questionable whether the textures described above show the result of stable or metastable unmixing. Stable unmixing in laboratory experiments is usually recognized by the presence of large (>10 μm diameter) droplets of one liquid disseminated in the conjugate matrix liquid, whereas metastable unmixing (which is due to insufficient time for crystallization during quenching) results in minute, nm-sized quench droplets (Hess, 1977; Freestone and Powell, 1983). As noted by Philpotts (2008) and demonstrated by Hamann et al. (2015) for impact melts, stable immiscible droplets tend to develop a second set of minute immiscible quench droplets. The silicate inclusions in Netschaevo show Lsi droplets ≤1.5 μm that show a second set of quench droplets in their cores, quite similar to the Lsi phases known from impact melts from the Wabar, Saudi Arabia (Hamann et al., 2013), and Kamil, Egypt (Hamann et al., 2015), impact craters. Hence, it has to be concluded that unmixing—whether stable or metastable—was due to low-temperature liquid immiscibility.

Constraining a temperature at which unmixing could have happened is not as straightforward as recognizing unmixing in the first place. Experimental data on the extent of the stable low-temperature two-fluid field constrain stable unmixing to temperatures between 1115 and 1230 °C in the system K2O–FeO–Al2O3–SiO2 (Roedder, 1978). Therefore we can cautiously define a temperature interval of ~1115 to ~1230 °C for final equilibration of the two melts before solidification of Lsi and crystallization of phosphoran olivine and Cl-apatite. This temperature range also provides a minimum temperature for the oxidation of P and Cr in the metallic melt, the redistribution of P and Cr between metal and silicate, and the unmixing of the liquids.

5.4.4. Formation of apatite and phosphoran olivine

Phosphoran olivine and Cl-apatite appear interwoven with each other, indicating they co-precipitated. The typical hopper morphology of the Cl-apatite crystals and the fact that the preservation of phosphoran olivine in the presence of a melt is limited to only a few weeks (Boesenberg and Hewins, 2010) indicates that these phases were formed during very rapid cooling and that the sample was not heated again after their formation. For phosphate saturation, Tollari et al. (2006) experimentally defined an equation to predict the P2O5 content of the coexisting silicate liquid:

$$M_{P2O5}^{\text{Liq}} = \exp \left[\frac{-0.8579}{139.00 - M_{\text{SiO2}}^{\text{Liq}}} + 0.0165 \right]$$

$$- 3.3333 \ln(M_{\text{CaO}}^{\text{Liq}})$$ \hspace{1cm} (4)

where M represents the molar percentage of the oxides and T is the temperature in K. Here, we want to deduce a temperature at which Cl-apatite saturated. As discussed previously, Cl-apatite probably precipitated from the Lfe melt. Using the average concentration of SiO2, CaO, and P2O5 measured in the SiO2-poor silico-phosphate melt (Table 1), a temperature of 1150 °C is calculated. This means that quenching occurred near or below 1150 °C. This temperature is based on the average composition and was probably locally higher or lower, depending on the availability of SiO2, CaO, and P2O5 in the melt.

6. IMPLICATIONS

One of the most important observations from this study is the high amount of phosphorus in the outer parts of the silicate inclusion, situated close to the metal host. This indicates that phosphorus, originally contained in the metal host of Netschaevo, re-partitions into the silicate melt upon cooling. In other meteorite groups, such as the IIIAB irons, this process was responsible for the presence of oxide phases, formed as a consequence of oxygen build-up in the metallic liquid during cooling and fractional crystallization. In silicate-free irons, the lack of a lithophile component results in a peculiar Fe–Mn phosphate mineralogy with no phosphoran olivine (Olsen et al., 1999). In contrast, oxidation processes were responsible for the conspicuous mineralogies of the stony-iron pallasite achondrites (Boesenberg et al., 2012; McKibbin and Claeyss 2014; Fowler-Gerace and Tait, 2015; McKibbin et al., 2015, 2016), which consist mainly of olivine and metal and are thought to have formed by mixing of mantle and core material (e.g., Buseck, 1977). Like in Netschaevo, phosphoran olivine is present in some pallasite meteorites, where it crystallized from a P2O5-rich silicate liquid (Boesenberg and Hewins, 2010). Apart from phosphoran olivine, at least four primary (probably igneous or metamorphic) phosphate minerals are present in pallasites: merrillite [Ca18Na2-Mg9(PO4)2], stanfieldite [Ca3Mg6(PO4)2], farringtonite [Mg6(PO4)2], and a silico-phosphate (summarized in Boesenberg et al., 2012). These phosphates can be divided into two groups based on theirREE pattern: one that has low REE concentrations and is enriched in HREE and one that has high REE concentrations, is enriched in LREE, and has negative europium anomalies (Davis and Olsen, 1991). This probably indicates that two different processes were responsible for their formation, such as a near- or possibly slightly sub-solidus oxidation reaction for the first group and formation from a melt for the second group (Boesenberg et al., 2012). It should, however, be noted that these magma processes are distinct from the far sub-solidus (~700 °C and below) kamacite–taenite exsolution and inferred slow cooling rates, which occurred after magmatic evolution ceased (Yang et al., 2010). The presence of these near-solidus crystallizing phases rich in phosphorus, present in pallasites (from more than one parent body: Davis and Olsen, 1991; Hutcheon and Olsen, 1991) and in this study, indicates that re-partitioning of phosphorus might be a general process in planetesimal core–mantle environments. Thus, the Netschaevo sample might serve as a natural planetesimal core–mantle boundary experiment and can be used to constrain the temperature range over which phosphorus oxidation and re-partitioning takes place during planetesimal evolution. In the previous sections, we have provided estimates for several processes taking place in the formation of Netschaevo. It is clear that phosphorus
re-partitioning must have taken place after the crystallization of olivine and before the formation of immiscible melts. From our temperature estimates, this takes place between ~1400–1350 °C and ~1230–1115 °C.

7. CONCLUSIONS

The examined impact melt rock of Netschævo contains fine-grained matrix material of quasi-basaltic composition in the inner part of the inclusions, evolving towards a silico-phosphate matrix towards the contact with the metal host. A detailed nano-analytical investigation of the glassy silico-phosphate matrix material of Netschævo IIE by FIB-TEM shows that this material consists of phase-separated glass, phosphoran olivine, and quenched Cl-apatite. The presence of Si-rich amorphous globules containing finely-dispersed secondary droplets, as well as textures resembling emulsions formed by spinodal decomposition, indicate the action of silicate liquid immiscibility. Although this has been observed in several terrestrial impact melts, the investigated sample of Netschævo constitutes the first clear evidence of silicate liquid immiscibility in meteorites. Several processes took place during cooling of the silicate-metal assemblage, probably occurring in the following order: (i) precipitation of olivine from the liquid, (ii) re-partitioning of phosphorus from the metal into the silicate phase, (iii) formation of immiscible melts, and (iv) crystallization of phosphoran olivine and Cl-apatite in a late quenching event. Re-partitioning of phosphorus from the metal into the silicate phase is a process that probably also took place in pallasite meteorites. These silicate–metal meteorites also contain several late-crystallizing, P-bearing phases and are formed in a core–mantle environment on several parent bodies, indicating that re-partitioning of phosphorus could be a general process in these environments. By means of the Netschævo sample, providing a natural planetesimal core–mantle boundary experiment, the temperature at which this process takes place is estimated. Based on temperature ranges defined for olivine precipitation and the formation of immiscible melts, oxidation of phosphorus and re-partitioning must have occurred between ~1400–1350 °C and ~1230–1115 °C.

ACKNOWLEDGMENTS

We are grateful for the thorough reviews and constructive comments by Alan Rubin and an anonymous reviewer, who greatly helped to improve our manuscript. Moreover, we thank Chris Herd for editorial handling and the Natural History Museum of London for providing the sample of Netschævo (registration number: BM.33953). NVR and VD thank the FRS-FNRS for funding (MEMIN through an incentive grant). CH thanks the Barringer Family Fund (BM.33953). NVR and VD thank the FRS-FNRS for funding.

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.gca.2016.10.042.

REFERENCES

McKibbin S. J., Pittarello L. and Claeys P. (2015). Contrastings styles of interaction between core and mantle reservoirs in the Main-group pallasse source. 25th Goldschmidt Conference. Prague Congress Center, Prague. #2079(abstr.).

Associate editor: Chris Herd